Искусственный интеллект в логистике: 5 конкретных примеров применения
-
Мавлюдов Айзат Специалист группы внедрения подразделения логистики
Цифровая революция и повсеместный переход от аналоговых технологий к цифровым, начавшийся еще в 80-х годах прошлого века и частично продолжающийся до сих пор, внесли крайне важные изменения в логистическую отрасль. Сегодня цифровые технологии в логистической цепочке поставок являются важной и серьезной темой для многих компаний.
Находясь на высококонкурентном рынке, эффективно и гибко построенная работа позволяет любой компании получить лидирующие позиции в своей области. Поэтому компании ищут инструменты для помощи в принятии решений и оптимизации своих процессов с целью повышения операционной эффективности, удовлетворения потребностей клиентов и снижения расходов.
Сейчас новые технологии и, в частности, искусственный интеллект играют ключевую роль в решении амбициозных задач. По данным авторитетной исследовательской компании Gartner, в 2024 году около 50% логистических компаний будут инвестировать в технологии, поддерживающие искусственный интеллект.
В чем разница между РАП и ИИ?
Прежде всего, важно отличать РАП (Роботизированная Автоматизация Процессов) от ИИ (Искусственный Интеллект).
РАП – это технология, которая позволяет автоматизировать рутинные повторяющиеся задачи на основе заданных инструкций, используя роботов (ботов). Искусственный интеллект может опираться на РАП технологию для изучения и оптимизации процессов (например, для проведения инвентаризации и т.д.).
Фактически, ИИ пытается имитировать мышление человека. Таким образом, искусственный интеллект может улучшить существующие РАП, автоматизируя задачи, которые ранее не были автоматизированы, и помогать людям в принятии решений, выдавая и собирая статистику.
Как искусственный интеллект может помочь в логистике?
Далее мы приведем 5 реальных примеров того, как компании из разных стран мира уже сегодня используют или активно внедряют искусственный интеллект для оптимизации и модернизации складских процессов.
Пример №1: автоматизация процесса инвентаризации.
Процесс инвентаризации на складе – это трудоемкая задача. Помимо необходимости привлечения дополнительных ресурсов, она также требует внимания и усидчивости складского персонала. Плюс требуется использование специализированного оборудования, часто проводятся работы на высоте, сопряженные с риском для человека.
Чтобы решить обозначенные проблемы и минимизировать риски, компания L'Oréal, например, внедрила у себя беспилотную систему инвентаризации.
Дрон, оснащенный бортовой камерой, пролетает мимо стеллажей по каждой позиции и ярусу для проведения инвентаризации. Благодаря обработке видео с помощью искусственного интеллекта дрон может считывать штрихкоды, распознавать пустые места, учитывать высоту слоев и определять, где закончилась одна ячейка и началась другая.
Какие это дает преимущества:
- процесс инвентаризации проходит быстрее;
- низкий процент ошибок;
- снижение операционных расходов (не нужно привлекать дополнительные человеческие ресурсы);
- повышается безопасность сотрудников (не нужно работать на высоте).
Пример №2: умное управление запасами.
Управление запасами – это очень важная задача. Ведь запасы – равно деньги. Неэффективное управление товарными запасами приводит к снижению рентабельности, что в последствии отражается на жизни всего предприятия. Искусственный интеллект может помочь человеку и в этом вопросе, ведь с помощью него можно более эффективно управлять запасами. Каким образом?
На основе исторических данных, текущих запасов, отгрузок, товародвижения искусственный интеллект способен прогнозировать потребности предприятия и может давать взвешенные рекомендации (закупка, перемещение и т.д.). Он способен определять, какие товары продаются быстрее, какие – медленнее, а какие и вовсе не пользуются спросом. Это позволяет корректировать запасы таким образом, чтобы избежать дефицита, ограничить переизбыток и в соответствии с этим становится возможным построить более точные запасы.
Также искусственный интеллект может прогнозировать нужные запасы в нужное время – это сокращает время доставки товара до клиента.
Преимущества:
- снижение транспортных расходов;
- снижение стоимости хранения товара на складе;
- закупки становятся более эффективными и взвешенными;
- увеличение качества клиентского сервиса.
Пример №3: автоматизация процесса комплектации заказов.
Чтобы облегчить работу сборщиков заказов и даже полностью ее автоматизировать, искусственный интеллект можно связать с роботами. В итоге это позволит значительно сэкономить время и повысить производительность.
Например, маркетплейс Cdiscount внедрил у себя роботов с искусственным интеллектом.
Благодаря роботизированной системе происходит оптимизация комплектации заказов. На складе присутствует парк из сотни роботов, которые могу двигаться в трех направлениях. Роботы могут передвигаться не только по земле, но и подниматься на высоту. Благодаря этой технологии Cdiscount увеличили емкость склада в пять раз. Производительность же, увеличилась в три-четыре раза, чем при ручном управлении.
Преимущества:
- более быстрая и точная комплектация заказов;
- снижение операционных расходов на персонал;
- повышение эффективности работы сотрудников.
Пример №4: автоматизация процесса сортировки посылок.
С ростом электронной коммерции растут и потоки посылок, что так же требует оптимизации процессов. Искусственный интеллект и здесь может прийти на помощь, став ценным инструментом для автоматизации этого этапа цепочки поставок.
Компания экспресс-доставки STO Express использует роботов для сортировки своих посылок.
Робот, оснащенный камерой, который передвигается самостоятельно, благодаря оптическому распознаванию способен для быстрой идентификации сканировать этикетки товаров и их характеристики (вес, размеры, географию и адрес доставки). Благодаря заранее определенной системе для сортировк, роботы автоматически направляют посылки к местам назначения.
Благодаря роботам-сортировщикам, которые работают совместно с искусственным интеллектом, STO Express обрабатывают 18 000 посылок в час. Также в компании повысилась эффективность, точность и безопасность процесса сортировки, что дополнительно снизило трудозатраты на 70%.
Преимущества:
- более точная оценка время прибытия посылки;
- снижение трудозатрат;
- повышение безопасности процесса;
- повышение качество сервиса и удовлетворенность клиентов.
Пример №5: оптимизация маршрутов доставки.
«Последняя миля» (конечная доставка до потребителя) является сложным и трудноуправляемым процессом из-за множества неожиданных событий, которые могут произойти. Пробки, аварии, временные перекрытия дорог и т.д. – ограничений может быть огромное количество. Реагировать на них «вручную» – не лучший способ решения этой задачи.
Решения по оптимизации маршрутов на основе искусственного интеллекта позволяют создавать эффективные маршруты доставки в режиме реального времени с учетом реальной обстановки и событий, которые происходят на маршруте движения. Благодаря им водители могут предоставить высокое качество сервиса конечному потребителю. Как именно это работает?
Искусственный интеллект, применяя методы машинного обучения, собирает данные и на основании этого делает свои прогнозы и прокладывает оптимальный маршрут, весьма точно определяя время доставки. Данными для анализа могут служить: тип клиента, район доставки, этаж, размер и вес посылки и т.п. Также могут использоваться данные загруженности дорог в часы пик, дорожные и погодные условия.
Преимущества:
- меньше пройденных километров;
- снижение затрат и сокращение времени доставки;
- более высокое качество сервиса и удовлетворенность клиентов;
- снижение выбросов СO2.
Итоги
Как видно из описанных выше примеров, искусственный интеллект уже сегодня имеет массу возможных вариантов применения в логистике. Любые задачи, требующие анализа больших объемов данных, учета или расчета чего-либо с помощью ИИ решаются гораздо быстрее и эффективнее.
Разумеется, настройка и обучение любой автоматизированной системы на базе искусственного интеллекта – это довольно сложный, долгий и дорогостоящий процесс, однако при грамотной организации процесса все вложения более чем окупаются уже в среднесрочной перспективе. При этом стоит понимать, что ИИ технологии сейчас развиваются очень быстрыми темпами, и с развитием они становятся более доступными. Поэтому повсеместное использование искусственного интеллекта в логистике – это лишь вопрос времени.
Читайте еще статьи по применению ИИ в 1С для прогнозирования продаж.
____________________________________
Автор статьи: Айзат Мавлюдов – специалист группы внедрения подразделения логистики.
Дата публикации статьи 15.11.2023.